Henrycinols A and B, Two Novel Indole Alkaloids Isolated from Melodinus henryi CRAIB

by Yan Wen Zhang^{*a}), Rui Yang^b), Qian Cheng^{*c})¹), and Katsuya Ofuji^c)

^a) Laboratory of Medicinal Chemistry, College of Pharmacy, Tianjin Medical University, Tianjin 300203, P.R. China

^b) Department of Medicine, Guiyang Medical University, Guiyang 550004, Guizhou, P.R. China

^c) Laboratory of Applied Bioorganic Chemistry, Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori-Amamiyamachi, Aoba-ku, Sendai 981-8555, Japan

Henrycinols A (1) and B (2), two novel indole alkaloids, together with three known compounds, (+)- Δ^{14} -vincamine (3), (+)-16-epi- Δ^{14} -vincamine (4), and (+)-isoeburnamine (5), were isolated from the roots of *Melodinus henryi* CRAIB. Their structures were established on the basis of 1D- and 2D-NMR spectroscopic analysis. The relative configuration of henrycinols A and B was determined by NOESY analysis.

1. Introduction. – The family Apocynaceae comprises several species distributed throughout the tropical regions of China. *Melodinus henryi* CRAIB is one species of Apocynaceae existing in China, and its fruits are used in traditional medicine for the treatment of children meningitis and bone fracture [1]. Phytochemical studies on the fruits of *M. henryi* led to the isolation of indole alkaloids [1-3]. However, further studies on the roots of *M. henryi* have not yet been reported. Recently, our phytochemical investigation of the roots of *M. henryi* has led to the isolation of two new indole alkaloids henrycinol A (1) and B (2), named according to the plant name, together with three known alkaloids (+)- Δ^{14} -vincamine (3), (+)-16-epi- Δ^{14} -vincamine (4), and (+)-isoeburnamine (5). Herein, we report the isolation and structure elucidation of these two new compounds.

2. Results and Discussion. – Compound **1** was isolated as a white amorphous solid in a very small amount. The molecular formula was determined to be $C_{27}H_{28}N_2O_4$ by HR-FAB-MS analysis of the protonated-molecule peak $[M + H]^+$ at m/z 445.2121 ($\Delta = +0.3$ amu) in addition to ¹³C-NMR. The UV spectrum showed absorptions at 232, 278, and 290 nm, typical of an indolic chromophore. The IR spectrum showed absorption bands at 3500, 3030, 1735, and 1620 cm⁻¹, indicating the presence of OH, aromatic, ester, and olefinic moieties. Compared to the ¹H-NMR data of the known indole alkaloid Δ^{14} -vincamine (**3**), the ¹H-NMR spectrum of **1** showed five aromatic H-atoms at δ 7.36 (m, 3 H) and 7.45 ppm (m, 2 H), in addition to the four aromatic H-atoms of the vincamine's A-ring at δ 7.51 (d), 7.14 (t), 7.21 (m), and 7.28 ppm (d) (*Table*). A coupling constant of J = 16.2 Hz between the H-atom at δ 6.45 (d) and another H-atom

Current address: Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA. Phone/fax: 1-850-644-3546/1-850-644-8281, e-mail: gcheng@chem.fsu.edu.

at δ 7.61 ppm (*d*) typical for an (*E*)-configured double bond, and two C=C bond Catom resonances at 117.74 and 145.31 ppm were observed in ¹³C-NMR, indicating the presence of a cinnamoyl group, which was further confirmed by HMBC (*Fig. 1*) correlations of H–C(19) to C(18), C(20), and C(21), and H–C(20) to C(18), C(19), C(21), and C(22). Detailed analysis of the ¹H- and ¹³C-NMR spectra of **1**, along with its ¹H,¹H-COSY and HMQC, revealed two high-field H-atoms at δ 2.95 (*dd*, *J* = 16.2, 4.8 Hz) and 2.65 ppm (*d*, *J* = 16.2 Hz) assigned to C(6), one H-atom at δ 3.71 ppm (*m*) assigned to C(5), two H-atoms at δ 4.25 (*dd*, *J* = 10.8, 7.8 Hz) and 4.67 ppm (*dd*, *J* = 10.8, 6.0 Hz) assigned to C(17), two H-atoms at δ 3.62 (*t*, *J* = 10.8 Hz) and 4.56 ppm (*dd*, *J* = 10.8, 6.0 Hz) assigned to C(14), as well as five H-atoms at δ 3.07 (*dd*, *J* = 13.8, 8.4 Hz), 3.52 (br. *d*), 6.10 (*m*), 5.20 (*d*, *J* = 10.2 Hz), and 5.28 ppm (*d*, *J* = 17.4 Hz) assigned to C(25), C(26), and C(27), respectively, of the allyl group connected at N(4). These assignments were evidenced by their HMBC correlations (*Fig. 1*).

Fig. 1. The key ¹H,¹³C long-range correlations (HMBC) of 1 and 2

N(1)	
2 130.07	
2 150.07	
3 $4.20(d)$ 9.6 $H-C(16)$ 55.30 $H-C(3)$	
N(4) – – – – – –	
5 3.71 (m) H_{β} -C(6), H _a -C(17), 54.56 H-C(5) H_{b} -C(17)	
6 <i>α</i> 2.95 (<i>dd</i>) 16.2, 4.8 H–C(5), H _{<i>a</i>} –C(6) 18.18 H–C(6), H _{<i>β</i>} . 6 <i>β</i> 2.65 (<i>d</i>) 16.2 H–C(6)	-C(6)
7 104 45	
8 128.87	
9 7 51 (d) 7 2 $H-C(10)$ 118 45 $H-C(9)$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
11 7.21 (<i>m</i>) $H-C(9), H-C(10), 121.65 H-C(11) H-C(12)$	
12 7.28 (d) 7.8 $H-C(11)$ 109.66 $H-C(12)$	
13 136.64	
14a 3.62 (t) 10.8 $H_{\beta}-C(14), H-C(15)$ 46.88 $H_{\alpha}-C(14), H$	$I_{\beta} - C(14)$
14 β 4.56 (<i>dd</i>) 10.8, 6.0 H _a -C(14), H-C(15)	,
15 4.29 (<i>ddd</i>) 10.8, 9.6, 6.0 $H_a - C(14), H_\beta - C(14),$ 70.86 $H - C(15)$ H - C(16)	
15-OH 4.75 (br. s)	
16 $3.92(t)$ 9.6 $H-C(3), H-C(15)$ 71.82 $H-C(16)$	
16-OH 1.76 (s)	
17a 4.67 (<i>dd</i>) 10.8, 6.0 $H-C(5)$, $H_b-C(17)$ 65.55 $H_a-C(17)$, H_b	$L_{b} - C(17)$
17b 4.25 (<i>dd</i>) 10.8, 7.8 $H-C(5)$, $H_a-C(17)$	
18 (C=O) 166.87	
19 $6.45(d)$ 16.2 H-C(20) 117.74 H-C(19)	
20 7.61 (<i>d</i>) 16.2 H-C(19) 145.31 H-C(20)	
21 134.24	
22 7.45 (m) $H-C(23), H-C(24)$ 128.11 (C _a) $H-C(22)$	
23/24 7.36 (m) $H-C(22)$ 128.87 (C _m) $H-C(23)$	
$130.37 (C_p) H - C(24)$	
25a 3.52 (br. d) 13.8 $H_b-C(25), H_a-C(25), 51.08 H_a-C(25), H_a-C(25), H_b-C(25), H_b$	$L_{b} - C(25)$
25b $3.07 (dd) = 13.8, 8.4 = H_a - C(25), H - C(26)$	
26 $6.10(m)$ $H_a-C(25), (E/Z)-H-C(27)$ 136.12 $H-C(26)$	
27 (Z) 5.20 (d) 10.2 $H-C(26)$ 118.09 (E/Z)- $H-C($	27)
27 (E) 5.28 (d) 17.4 $H-C(26)$	

Table 1. ¹*H*- and ¹³*C*-*NMR*, and 2*D*-*NMR* Data of Henrycinol A (1) (500 MHz, CDCl₃, δ in ppm)

The relative configuration of compound **1** was deduced by NOESY studies (*Fig.* 2). A *cis*-relationship (α -orientation) of H–C(3), H–C(15), and CH₂(17) was established by the NOE correlations between H–C(3) and H–C(15), and H–C(3) and CH₂(17). Similarly, the NOE correlations between H–C(5) and H_{β}–C(6), and H–C(16) and H_{β}–C(14) indicated a *cis*-relationship (β -orientation) of H–C(5) to H_{β}–C(6), and H–C(6), and H–C(16), to H_{β}–C(14), respectively.

Compound **2** was obtained as a white amorphous powder. In comparison to the ¹Hand ¹³C-NMR data of **1**, those of **2** indicated an additional isobutyryl group, which was substantiated by the MS of **2** with the molecular ion at m/z 514. HR-FAB-MS gave a molecular formula of C₃₁H₃₄N₂O₅ ([M + H⁺] at m/z at 515.2537). A multiple *singlet* at δ

Fig. 2. The relative configuration of 1 deduced from NOESY data (arrows)

2.65 and two respective double *singlets* at δ 1.22 and 1.20 ppm were assigned to the isobutyryl group by HMBC correlations of a H-atom at δ 2.65 ppm to two Me moieties (δ (C) 18.99 (q) and 18.90 ppm (q)). These signals, together with HMBC correlations of these two Me moieties and H–C(15) (δ 5.40 ppm (*td*)) to a new C=O group resonance at δ (C) 176.75 ppm, indicated that the isobutyryloxy group was at C(15). Therefore, **2** was determined to be 15-isobutyrylhenrycinol A.

Besides henrycinols A and B, the other three compounds isolated were established to be alkaloids (+)- Δ^{14} -vincamine (3) [3][4], (+)-16-epi- Δ^{14} -vincamine (4) [3][4], and (+)-Isoeburnamine (5) [3-7], respectively.

Experimental Part

General. Column chromatography (CC): Merck silica gel 60 (100–200 mesh). Prep. TLC: Merck silica gel 60 F254 plates (0.8-mm thickness), detection under UV light or by spraying with 10% H_2SO_4 and then by heating on a hot plate. Optical rotations: Horiba SEPA-300 digital polarimeter. IR and UV Spectra: Jasco IR-810 and Shimadzu UV-1600 spectrophotometers, respectively. ¹H- and ¹³C-NMR, and 2D-NMR: Varian Unity INOVA-500 or INOVA-600 spectrometers, in CDCl₃ with TMS as an internal standard; chemical shifts (δ) and coupling constants (J) are expressed in ppm and in Hz, resp. MS and HR-MS: Jeol JMS-700 spectrometer by EI or FAB method.

Plant Material. The roots of *Melodinus henryi* CRAIB were collected in the Yunnan province of China in 1999, and a voucher specimen has been deposited in the Tianjin Medical University in China.

Extraction and Isolation. The dried root powder (1.0 kg) was extracted with 95% EtOH under reflux. The EtOH extracts were concentrated, and the residue was treated with 5% AcOH, followed by neutralization with NH₄OH to result in pH 9. The aq. phase was extracted with CHCl₃ ($3 \times$), and the org. phase was washed with H₂O. CHCl₃ was removed under reduced pressure, and the residue was applied to a column of silica gel eluted with petroleum ether/AcOEt (2:1, 1:1, 1:2, and 1:4 (ν/ν)) to give four fractions. The second fraction was further subjected to repeated CC and prep. TLC with CHCl₃/AcOEt (1:1 (ν/ν)) to give compounds **2**–**5**. The third fraction was subjected to repeated CC with CHCl₃/AcOEt (1:1 (ν/ν)) and prep. TLC with CHCl₃/AcOEt (1:2 (ν/ν)) finally to afford compound **1** as a white amorphous solid.

Henrycinol A (1): 11 mg/kg. $[a]_{10}^{20} = -43.7$ (c = 0.4, CHCl₃). UV (EtOH): λ_{max} 232 (2.6), 278 (2.4), 280 (2.8), 290 (2.3). IR (film): 3500, 3030, 2980, 2870, 1735, 1670, 1620, 1465, 1430, 1210, 750. ¹H- and ¹³C-NMR: *Table*. EI-MS: 444 (9, M^+), 429 (7), 426 (12), 415 (23), 411 (3), 383 (5), 367 (17), 340 (8), 326 (42), 290 (35), 284 (21), 267 (6), 265 (7), 253 (32), 229 (67), 197 (57), 180 (100), 167 (4), 140 (13), 122 (40), 118 (22). HR-FAB-MS: 445.2121 ($C_{27}H_{29}N_2O_4$; calc. 445.2126).

Henrycinol B (2): 7 mg/kg. $[\alpha]_D^{20} = -60.7 (c = 0.7, CHCl_3)$. UV (EtOH): $\lambda_{max} 232 (2.4), 278 (2.9), 290 (2.6)$. IR (film): 3450, 3010, 2980, 2920, 2870, 1740, 1725, 1665, 1620, 1465, 1430, 1340, 1210, 1060, 765. ¹H-NMR (500 MHz, CDCl_3): 7.62 (*d*, *J* = 16, H–C(20)); 7.52 (*d*, *J* = 7.5, H–C(9)); 7.49–7.46 (*m*, 2 H, Ph); 7.39–7.37 (*m*, 3 H, Ph); 7.26 (*d*, *J* = 8.0, H–C(12)); 7.21 (*td*, *J* = 8.0, 1.0, H–C(11)); 7.14 (*td*, *J* = 8.0, 1.0, H–C(10)); 6.46 (*d*, *J* = 16, H–C(19)); 5.98 (*dddd*, *J* = 17.5, 10.5, 7.5, 5.0, H–C(26)); 5.40 (*td*, *J* = 9.0, 6.0, H–C(15)); 5.29 $(dd, J = 17.5, 1.0, (E)-H-C(27)); 5.19 (dd, J = 10.5, 1.0, (Z)-H-C(27)); 4.59 (dd, J = 11.5, 6.0, H_a-C(14)); 4.53 (dd, J = 11.0, 6.5, H_a-C(17)); 4.30 (dd, J = 11.0, 7.5, H_{\beta}-C(17)); 4.23 (br. dt, H-C(3)); 4.04 (t, J = 9.0, H-C(16)); 3.71 (m, H-C(5)); 3.65 (dd, J = 11.5, 9.0, H_{\beta}-C(14)); 3.52 (m, H_b-C(25)); 3.21 (dd, J = 13.5, 7.5, H_a-C(25)); 2.96 (ddd, J = 16.0, 6.0, 2.0, H_a-C(6)); 2.67 (br. s, OH); 2.65 (m, Me_2CH); 2.63 (dd, J = 16.0, 2.0, H_{\beta}-C(6)); 1.22, 1.20 (2d, J = 7, 2 Me). ^{13}C-NMR (125 MHz, CDCl_3): 176.75 (C=O); 166.89 (C(18)); 145.15 (C(20)); 136.84 (C(13)); 136.48 (C(26)); 134.27 (C(21)); 130.31 (C(24)); 128.84 (C(23)); 128.24 (C(2)); 128.11 (C(22)); 128.10 (C(8)); 121.67 (C(11)); 119.86 (C(10)); 118.52 (C(9)); 117.78 (C(27)); 117.53 (C(19)); 109.48 (C(12)); 105.38 (C(7)); 72.30 (C(16)); 70.26 (C(15)); 64.77 (C(17)); 55.80 (C(3)); 54.47 (C(5)); 51.39 (C(25)); 44.71 (C(14)); 33.96 (d, Me_2CH); 18.99 (q, Me_2CH); 18.90 (q, Me_2CH); 18.82 (C(6)). EI-MS: 514 (3, M^+), 513 (5), 537 (3), 528 (11), 497 (13), 489 (6), 465 (34), 448 (21), 431 (4), 389 (6), 357 (31), 331 (23), 315 (2), 289 (8), 284 (9), 250 (34), 235 (47), 221 (14), 180 (100), 171 (56), 144 (25), 117 (17). HR-FAB-MS: 515.2537 ([M + 1]^+, C_3)H_{35}N_2O_5; calc. 515.2544).$

 $(+)-\Delta^{14}-Vincamine (3): 23 \text{ mg/kg. } [\alpha]_{D}^{30} = +114.7 (c = 0.9, \text{ CHCl}_3). \text{ UV (EtOH): } \lambda_{\text{max}} 232 (2.6), 278 (2.8), 290 (2.1). \text{ IR (KBr): } 3430, 3040, 2950, 2924, 1740, 1610, 1450, 1210, 745. ^{1}\text{H-NMR (500 MHz, CDCl}_3): 7.45 (d, J = 7.8, 1 \text{ H}); 7.19 (d, J = 8.1, 1 \text{ H}); 7.15 (m, 1 \text{ H}); 7.13 (m, 1 \text{ H}); 5.80 (d, J = 10, 1 \text{ H}); 5.61 (m, 1 \text{ H}); 4.09 (s, 1 \text{ H}); 3.87 (s, 3 \text{ H}); 3.20 - 3.27 (m, 2 \text{ H}); 3.10 - 3.15 (m, 2 \text{ H}); 2.91 (m, 1 \text{ H}); 2.48 (m, 1 \text{ H}); 2.37 (d, J = 15.1, 1 \text{ H}); 1.92 (m, 1 \text{ H}); 1.72 (s, OH); 1.61 (m, 1 \text{ H}); 0.97 (t, J = 7.4, 3 \text{ H}). ^{13}\text{C-NMR} (125 \text{ MHz, CDCl}_3): 168.95; 134.56; 128.41; 127.42; 126.98; 126.78; 120.10; 119.03; 117.41; 112.21; 104.56; 76.57; 58.07; 51.01; 50.99; 43.87; 42.65; 37.61; 33.52; 16.78; 8.49. EI-MS: 352 (3, M^+), 337 (7), 323 (9), 319 (3), 305 (23), 293 (2), 284 (11), 263 (45), 250 (42), 249 (41), 235 (23), 224 (15), 221 (11), 206 (3), 180 (100), 170 (78), 169 (73), 144 (31), 132 (12), 117 (17).$

(+)-16-*Epi*- Δ^{14} -*vincamine* (**4**): 15 mg/kg. $[a]_{10}^{20}$ = +29.8 (c = 0.4, CHCl₃), M.p. 181–183°. UV (EtOH): λ_{max} 232 (3.2), 278 (2.4), 290 (2.8). IR (KBr): 3420, 3040, 2970, 2920, 1730, 1620, 1455, 1320, 910, 750. ¹H-NMR (500 MHz, CDCl₃): 7.43 (d, J = 7.4, 1 H); 7.40 (d, J = 8.4, 1 H); 7.15 (m, 1 H); 7.11 (m, 1 H); 5.46 (m, 1 H); 5.27 (d, J = 10.0, 1 H); 3.77 (s, 1 H); 3.48 (s, 3 H); 3.21–3.26 (m, 2 H); 3.02–3.08 (m, 2 H); 2.87 (m, 1 H); 2.63 (d, J = 15.3, 1 H); 2.46 (m, 1 H); 2.01 (d, J = 15.3, 1 H); 1.81 (q, J = 7.4, 2 H); 0.93 (t, J = 7.4, 3 H). ¹³C-NMR (125 MHz, CDCl₃): 169.13; 132.47; 127.46; 127.21; 126.63; 126.59; 120.72; 120.01; 116.25; 111.39; 104.27; 78.24; 59.21; 52.27; 49.87; 42.16; 42.13; 36.49; 34.64; 16.54; 9.07. EI-MS: 352 (2, M^+), 351 (6), 323 (7), 305 (17), 293 (11), 284 (2), 263 (7), 250 (32), 249 (27), 235 (12), 221 (42), 206 (17), 185 (56), 167 (100), 149 (58), 144 (14), 132 (9), 121 (21).

(+)-*Isoeburnamine* (**5**): 13 mg/kg. $[\alpha]_{D}^{20} = +112.4$ (c = 0.3, CHCl₃). UV (EtOH): λ_{max} 230 (2.1), 276 (2.3), 292 (2.9). IR (KBr): 3340, 3035, 2945, 2860, 1660, 1460, 1270, 745. ¹H-NMR (500 MHz, CDCl₃): 7.73 (d, J = 1.6, 1 H); 7.46 (d, J = 8.1, 1 H); 7.17 (m, 1 H); 7.13 (m, 1 H); 5.54 (dd, J = 11.5, 4.8, 1 H); 3.52 (s, 1 H); 3.21 – 3.29 (m, 2 H); 2.91 (m, 1 H); 2.49 (m, 1 H); 2.47 (m, 1 H); 2.46 (m, 1 H); 2.19 (m, 1 H); 2.17 (dd, J = 15.4, 4.8, 1 H); 2.0 (m, 1 H); 1.86 – 1.90 (m, 2 H); 1.54 (dd, J = 15.4, 11.5, 1 H); 1.40 (m, 1 H); 1.37 (m, 1 H); 0.97 (t, J = 7.4, 3 H). ¹³C-NMR (125 MHz, CDCl₃): 136.21; 132.10; 128.72; 121.68; 120.54; 119.40; 111.67; 104.27; 75.62; 56.11; 50.13; 44.62; 42.15; 34.78; 30.21; 25.89; 21.34; 15.94; 7.20. EI-MS: 296 (3, M^+), 295 (5), 278 (6), 268 (11), 250 (16), 248 (4), 220 (8), 208 (32), 206 (36), 193 (78), 167 (100), 139 (42), 112 (23), 97 (19).

The Japan Society for the Promotion of Science for a fellowship to Q. Cheng, and Ms. T. Yamada of Tohoku University for MS and HR-MS analysis are gratefully acknowledged.

REFERENCES

- [1] C. M. Li, S. G. Wu, G. D. Tao, J. Y. Zhong, C. You, Y. L. Zhou, L. Y. Dong, Zhong Chao Yao 1987, 2, 1.
- [2] J. Bruneton, A. Cave, A. D. Cave, Tetrahedron 1973, 29, 1131.
- [3] C. M. Li, G. D. Tao, S. G. Wu, J. Y. Zhong, Y. L. Zhou, Acta Botanica Sinica 1989, 31, 792.
- [4] W. G. Kump, M. B. Patel, J. M. Rowson, H. Schmid, Helv. Chim. Acta 1964, 47, 1497.
- [5] K. Awang, M. Pais, T. Sevenet, H. Schaller, A. M. Nasir, A. Hamid, A. Haid, Phytochemistry 1991, 30, 3164.
- [6] T. S. Kam, P. S. Tan, C. H. Chuah, Phytochemistry 1992, 31, 2936.
- [7] T. S. Kam, P. S. Tan, C. Wei, *Phytochemistry* 1993, 33, 921.

Received September 4, 2002